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• High pressure (~10-30 atm)
• Lean/rich conditions for low NOx (3ppm)
• Preheated temperature (~ 650K)
• High levels of diluents (N2, H2O,or CO2)

Research goal:
Gas Turbine Engines Using Hydrogen Syngas

•Validated, reduced order kinetic mechanism
•Understanding kinetics at engine conditions
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Research Tasks

•Methodology to measure flame speeds at high pressure

•Flame speed measurements and mechanism validation

•Dynamic multiscale (AMS) kinetic reduction algorithm 
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1. Methodology to measure rigorous flame speeds
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Flame speed measurement using spherical flames

What if the burned gas velocity is not zero?
Flame speed error will be:
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Assumption: Burned gas velocity is zero!

What causes non-zero burned gas velocity?
Compression, non-symmetric flow, radiation…
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Flame speed measurement using a spherical bomb: 
Compression induced burned gas velocity

Chen & Ju 2007
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Constant pressure method: Compression induced burned gas velocity
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Constant Pressure Method: Compression Corrected Flame Speed (CCFS)
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What if a cylindrical chamber is used?

Princeton 8.3 cm 8.3 cm diadia by 13 cm length (Law),by 13 cm length (Law),
10 cm 10 cm diadia by 15 cm length (by 15 cm length (JuJu))

Other groups too!Other groups too!
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What if a cylindrical chamber is used?

Non-symmetrical flow induced burned gas velocity!
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Burke, Chen, Ju, Dryer, submitted for publication
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Difficulty in linear extrapolation!

Strongly stretchedFlow effect
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How to improve the measurements

Potential flow:

Ring source

Point source
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Burke, Chen, Ju, Dryer, submitted for publication

Improves accuracy and extends range of 
flame radii that can be used for 

extrapolation

Flow correction of flame speeds

Allows for flame speed 
determination for flames with 

long ignition transients

Chen, Burke, Ju, 
Proc. Comb. Inst. (2009)

Rich hydrogen-airSyngas-air
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2. Flame speed measurements & kinetic mechanism
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Experimental data: Syngas flame speed at 10, 20 atm
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Experimental Data (hydrgon-air):
Flame speed vs. Pressure

• Flame speed decreases uniformly with pressure
• Flame speed becomes insensitive to mixture composition, but only to 

temperature at high Pressure

Lean H2/O2/He of Flame Temp=1600K
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Experimental data:
Mass Burning Rate vs. Pressure

• Mass burning rate increases with pressure until 15 atm, 
then decreases with pressure
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Validation of kinetic mechanism
Lean mixtures at high pressures

• Mechanism of Davis et al. outperforms the other models
• Other models disagree by up to ~40%

H2/O2/He, Phi=1.0, He=82.3%, Tf=1600K
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• No model accurately predicts trends above 15 atm
• Differences among models reach about a factor of 2

H2/O2/Ar, phi=2.5, Ar=61.3%, Tf=1600K
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What happens kinetically when the pressure increases?

• Three-body reactions favored
– e.g. 

H+O2

OH+O  (R1)

+M *chain-termination 

*favored at higher pressures 
and lower temperatures

*chain-branching

*favored at lower pressures and 
higher temperatures

HO2 (R9)

• Extended Second Limit – demarcates 2 distinct 
kinetic regimes
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mechanism is 
chain branching

Overall 
mechanism is 
chain terminating
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Branching Ratios and Radical Pool Decrease 
with Pressure

H2-air of equivalence ratio 4.0
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Flux Analysis

• Extended Second Limit, 
2k1/k9[M]=1, pushed to higher 
temperatures with increasing 
pressure
– Raises the overall activation 

energy
Pushes the radical 

concentration and reaction flux 
profiles toward the back end of 
the flame

– Extended second limit as a 
chemical singularity

Sensitivity to rate parameters 
blows up

Small differences in 
parameters make a big difference
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Sensitivity Analysis

• Competition of H+O2 and H+O2+M becomes more sensitive 
with increasing pressure

• HO2 + H/OH reactions become more sensitive with increasing 
pressure at rich and lean conditions.

• No simple fix of the kinetic mechanism.
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3. Development of reduced order kinetic mechanism
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Detonation
H2-Air, T=298K,φ=0.5
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A close look at hydrogen mechanism vs. QSS species

Time scales are very different!
No species can be reduced! How to reduce chemistry size?
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A dynamic multi-scale (DMS) kinetic reduction model

Time scales in reactive flow

1 s

10-2s

10-4s

10-6s

10-8s

10-10s

Flow time

Transport time
Molecular
Turbulent 

NO formation

Product formation H2O

Radical formation H

Radical formation  H2O2
quasi-steady state?

Radiation transfer
quasi-steady state

Chemical time Physical time

DNS Time-step

Physical 
interest

?



Pr
in

ce
to

n 
U

ni
ve

rs
ity

Algorithm of Dynamic Multi-Scale (DMS) Modeling
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Computational efficiency of DMS method
Hydrogen/air ignition

N
o.

Max. calculation 
times for groups Base time step

Average 
calculation 

time (s)

Figure 
No.

For fix time step Euler

1 1 Step=Min. characteristic 
time 5.8

For Static Multi-scale(2 Groups)

1 9 Min. characteristic time 5.3

2 5 Min. characteristic time 3.8

3 3 Min. characteristic time 2.9

4 2 Min. characteristic time 1.9

For Dynamic Multi-scale method vs.
Direct numerical simulation of Euler equation, 6.66 s needed

1 50% Min. characteristic 
time*100 0.57 s DMTS-

11

With a detailed mechanism and no QSS assumption,
Computation is speeded 10 times!
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Conclusions

• A rigorous experimental approach for flame 
speed measurement at high pressures was 
developed.

• Hydrogen flame speed has a positive dependence 
on pressure up to 15 atm, but a negative 
dependence at higher pressures.

• No existing models reproduce measured flame 
speeds of high pressure rich hydrogen flames.

• A dynamic multiscale model is developed to 
reduce computational time by one order.
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Flame Speeds with Preheat and H2O 
dilution (with Counterflow Flames)

• Performed preliminary tests with PIV system and 
evaporator

• Currently refining the system to prepare for gathering 
data
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High pressure flame speed (Su) measurement
Effect of non-spherical flow, ub≠0
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Compression of measured hydrogen syngas flame speed 
H2H2--CO = 50:50 CO = 50:50 syngassyngas mixture in air at 1 mixture in air at 1 atmatm

Burke, Qin, Ju & Dryer 2007
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